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ABSTRACT

Ocean currents in the surface boundary layer are sensitive to a variety of pa-

rameters not included in classic Ekman theory, including the vertical structure

of eddy viscosity, finite boundary layer depth, baroclinic pressure gradients,

and surface waves. These parameters can modify the horizontal and verti-

cal flow in the near-surface ocean, making them of first-order significance

to a wide range of phenomenon of broad practical and scientific import. In

this work, an approximate Green’s function solution is found for a model of

the frictional ocean surface boundary layer, termed the generalized Ekman

(or Turbulent Thermal Wind) balance. The solution admits consideration of

general, more physically realistic, forms of parameters than previously possi-

ble, offering improved physical insight into the underlying dynamics. Closed

form solutions are given for the wind-driven flow in the presence of Coriolis-

Stokes shear, a result of the surface wave field, and thermal wind shear, arising

from a baroclinic pressure gradient, revealing the common underlying phys-

ical mechanisms through which they modify currents in the ocean boundary

layer. These dynamics are further illustrated by a case study of an idealized

two-dimensional front. The solutions, and estimates of the global distribution

of the relative influence of surface waves and baroclinic pressure gradients

on near-surface ocean currents, emphasize the broad importance of consider-

ing ocean sources of shear and physically realistic parameters in the Ekman

problem.
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1. Introduction29

Diagnosing velocities in the ocean boundary layer is key to many issues of broad practical and30

scientific importance, from larval dispersion, to search and rescue, to the general ocean circulation.31

Today much of our understanding of boundary layer currents remains rooted in classic Ekman32

theory, which holds that, with some knowledge of the turbulent eddy viscosity, the ageostrophic33

ocean response is completely determined by the surface wind stress (Ekman 1905). However,34

despite the tremendous explanatory power of Ekman theory, basic observational confirmation of35

the structure of flow in the boundary layer has been challenging.36

In response to discrepancies between the theory and observations, a large literature has devel-37

oped, focused on modifications to the classic Ekman theory. Broadly speaking the proposed mod-38

ifications to Ekman theory can be divided into local one-dimensional mechanisms, such as time-39

variability (Price et al. 1986; Schudlich and Price 1998; Price and Sundermeyer 1999; McWilliams40

et al. 2009), vertical structure in eddy viscosity (Madsen 1977; Miles 1994; Grisogono 1995), or41

finite boundary layer depth (Welander 1957; Stommel 1960; Lewis and Belcher 2004; Elipot and42

Gille 2009), and mechanisms that involve non-local effects such as horizontal buoyancy gradi-43

ents (McPhaden 1981; Cronin and Kessler 2009), surface waves (Huang 1979; Jenkins 1986; Xu44

and Bowen 1994; Lewis and Belcher 2004; Polton et al. 2005), and non-linearity (Stern 1965;45

Niiler 1969; Thomas and Rhines 2002). Many of these proposed modifications have closed the46

gap between theory and observations, however, generally analytic solutions are only available for47

specific forms of parameters, limiting the possibility for inter-comparison of the various proposed48

mechanisms, and critically, their application to realistic ocean fields.49

Here we utilize a simple model of the viscous boundary layer, termed the generalized Ekman50

model (Cronin and Kessler 2009), or the Turbulent Thermal Wind balance (Gula et al. 2014). This51
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model contains many of the modifications to basic Ekman theory that have been proposed individ-52

ually, and has already proven successful in explaining observed horizontal currents (Cronin and53

Kessler 2009), as well as modeled boundary layer vertical velocities (Gula et al., McWilliams et54

al., 2015). Previously, solutions to this model with physically realistic parameters required numer-55

ical methods, with analytic solutions available only for greatly simplified forms of the parameters56

(Bonjean and Lagerloef 2002; Cronin and Kessler 2009; McWilliams et al. 2015), limiting insight57

into the underlying dynamics.58

In this manuscript we significantly extend these earlier results by providing an approximate so-59

lution to the generalized Ekman (Turbulent Thermal Wind) model that can accommodate a wide-60

range of physically realistic parameters, providing a unifying framework for many of the individu-61

ally proposed modifications to classic Ekman theory (section 2). Using this solution, two limiting62

cases, corresponding to a surface wave field and horizontal buoyancy gradient, are explored to63

further illuminate the underlying dynamics (section 3). The approximate solutions to these lim-64

iting cases reveal how these two ocean dynamic processes modify the Ekman solution in similar65

ways, drawing a previously unnoted connection between these processes, and their accompanying66

literatures.67

In section 4 the solution is applied to an idealized front, illustrating how thermal wind shear68

in the presence of viscosity can alter both the Ekman layer flow as well as drive overturning69

circulations in the boundary layer (Garrett and Loder 1981; Thompson 2000; McWilliams et al.70

2015). Estimates of the global distribution of wave and baroclinic pressure gradient effects on71

frictional boundary layer flow (section 5), and scaling analysis, suggest that these ocean dynamical72

processes can be expected to be of first order importance in determining near-surface currents for73

much of the world’s oceans.74
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2. Theory75

We consider steady, Boussinesq, flow in hydrostatic balance, where the complex horizontal ve-76

locity is denoted by u ≡ u+ iv, and ∇ ≡ ∂

∂x + i ∂

∂y . Horizontal mixing is ignored, and vertical77

mixing is parameterized by a turbulent eddy viscosity, Av, which is considered to be a specified78

parameter, allowed to vary vertically subject to moderate constraints imposed by the approxima-79

tion technique utilized, as discussed below. The horizontal and vertical momentum equations are80

thus given by,81

i fu=− 1
ρ0

∇P+
∂

∂ z

(
Av

∂u

∂ z

)
, (1)

82

0 =− 1
ρ0

∂P
∂ z

+b. (2)

Where the Rossby number, ε =U/ f L, is assumed small, and therefore the non-linear advection83

terms are excluded. Equation (2) expresses the hydrostatic balance, where b = −gρ/ρ0 is the84

buoyancy, also considered to be a known quantity, allowed to vary in the horizontal and vertical.85

Equation (1), a balance between the Coriolis acceleration, the pressure gradient force, and the86

turbulent diffusive flux divergence provides the basic starting point for Ekman theory. Deriving87

Ekman’s 1905 result begins with a decomposition of the total velocity into a geostrophic velocity88

in balance with the pressure gradient force (ug = i(ρ0 f )−1∇P), and solving for the ageostrophic89

velocity (ua = u−ug) in a boundary layer with characteristic thickness hEk =
√

2Av/ f , the90

Ekman depth, where it is assumed that Av is vertically uniform and ∇b = 0 (see for example91

Gill 1982, section 9.6). Equation (1) is a second order linear ordinary differential equation for92

velocity and so requires two boundary conditions on u, given for the classic Ekman problem by93

ρAv∂ua/∂ z = τw at the surface, where τw is the surface wind stress, and ua→ 0 as z→−∞.94
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Here we take a more general approach that does not require separating into geostrophic and95

ageostrophic components, by first vertically differentiating (1), and multiplying by ρ0Av(z) to96

form an equation for the stress, τ = ρ0Av(z)∂u/∂ z, which we refer to as the generalized Ekman97

model (following Cronin and Kessler 2009),98

Av(z)
∂ 2τ

∂ z2 − i fτ = ρ0Av(z)∇b, (3)
99

τ (0) = τw, (4)
100

τ (−h) = 0. (5)

The relationship of this model to various alternate Ekman layer formulations is discussed in101

detail by Cronin and Kessler (2009), however we further note that this is the same model termed102

the Turbulent Thermal Wind balance by Gula et al. (2014, and McWilliams et al. 2015) in their103

investigation of submesoscale cold filament dynamics.104

The surface boundary condition, (4), is unchanged from the classic Ekman problem, however105

the bottom boundary condition, (5), is posed as a no-stress condition, applied at a finite depth106

z =−h, rather than the no-slip condition utilized in the classic Ekman problem. This formulation107

of the problem maintains the classic Ekman transport, even in the presence of geostrophic shear108

at the base of the layer (Cronin and Kessler 2009), and is applicable at low latitudes or in depth109

limited seas (Stommel 1960; Bonjean and Lagerloef 2002). The solution technique utilized below110

is a global method, as opposed to a local boundary layer expansion, and thus sufficiently far from111

the boundary layer the solution will approach the inviscid limit. This gives a measure of flexibility112

in the choice of an appropriate h, however on the basis of physical arguments, developed further113

below, h should be chosen to be deeper than significant sources of geostrophic stress (defined in114

section 3b), so as to avoid the creation of a spurious interior ‘Ekman’ layer. When h� hEk, as115
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is the case for most of the extra-tropics, the near-surface solution is insensitive to the particular116

bottom boundary condition, and we further note that for the solutions given below letting h→ ∞117

results in simplified forms of the solutions that are equivalent to applying the bottom boundary118

condition τ → 0 as z→−∞. However, if a no-slip boundary condition is desired, the derivation119

follows directly from that given in Appendix A.120

To solve this linear inhomogeneous ordinary differential equation with non-constant coefficients,121

we first approximate a solution to the homogenous formulation of equation (3) using the Wentzel-122

Kramer-Brillouin (WKB) method (Bender and Orszag 1978; Grisogono 1995), and then solve for123

the inhomogeneous solution using variation of parameters (Hidaka 1955; Berger and Grisogono124

1998). A detailed derivation of the full solution is presented in Appendix A, however, briefly, the125

WKB method assumes the solution can be represented as:126

τ ∝ e(S0+S1δ+S2δ 2+...) 1
δ . (6)

Here, we use the physical optics approximation, and solve to first order (S1). The distinguished127

limit for the small parameter δ is found to be δ ∼ Ek1/2, where Ek = Av/ f H2, the Ekman number.128

The classic non-dimensionalization of (1), for constant Av, identifies H as the depth scale of the129

interior flow, which for values typical of a stratified mid-latitude ocean (Av ∼ 10−2 m2s−1, f ∼130

10−4s−1, H ∼ 100m) gives Ek ∼ O(10−2). However, retaining vertical structure in Av introduces131

an additional vertical length scale, hAv, into the problem. We thus have six physically relevant132

terms (Av, f, ug, ua, H, hAv), with two physical dimensions (time and length). Application of the133

Buckingham pi theorem (Buckingham 1914) then gives 4 non-dimensional parameters, 2 of which134

take the form of an Ekman number, π1 = Av0/ f H2 and π2 = Av0/ f h2
Av. The latter of these is likely135

to be a stricter constraint on the validity of the WKB expansion (Appendix B).136
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Formally, the use of the WKB approximation requires that the properties of the medium vary137

more slowly than the solution (Bender and Orszag 1978), a condition which may be violated in138

some geophysical flows. Further analysis of this requirement is given in Appendix A, however,139

as discussed in Appendix B, we find good agreement between numerical and approximate solu-140

tions for a range of Av profiles, and values of Ek, suggesting the utility of this solution (see also141

Grisogono 1995). For simplicity we also require that Av > 0 throughout the layer, so as to avoid142

the additional complexity of singularities in the equation. This constraint, and the WKB condition143

(A12), does not allow the direct application of the solution to cases where Av → 0 as z→ 0, as144

for instance occurs in the K-Profile Parameterization (KPP) (Large et al. 1994). If necessary, this145

restriction can be removed by patching the WKB solution to an inner solution, valid in a thin layer146

as Av→ 0 (as in Parmhed et al. 2005), discussed further in Appendix B.147

Once the WKB solution to the homogenous problem is identified, the inhomogeneous solution148

can be found using variation of parameters, and stated in terms of a Green’s function. The full149

solution (as derived in Appendix A) is thus given by,150

τ (z)= τw

(
Av(z)
Av(0)

) 1
4 sinh [θ(z)]

sinh [θ(0)]
+
∫ 0

−h
G(z,s) [ρ0∇b] ds. (7)

Where,151

θ(z) =
√

i f
∫ z

−h
Av(Z)−

1
2 dZ, (8)

and, G(z,s) is the symmetric Green’s function,152

G(z,s) =


sinh[θ(z)]sinh[θ(s)−θ(0)]Av(s)

1
4 Av(z)

1
4

sinh[θ(0)]
√

i f if s > z

sinh[θ(s)]sinh[θ(z)−θ(0)]Av(s)
1
4 Av(z)

1
4

sinh[θ(0)]
√

i f if s < z.
(9)

This general solution is a primary result of this manuscript.153

Velocity shear follows directly from the definition of stress. However, equation (3) is a third-154

order linear ordinary differential equation in velocity, and hence to go from shear to velocity155
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requires an additional boundary condition. Here, to determine velocity we use the solution for156

stress directly in the momentum equation (1),157

i fu=− 1
ρ

∇P+
1
ρ

∂τ

∂ z
, (10)

where τ is now known through (7). This approach ensures that the vertically integrated158

ageostrophic velocity satisfies the classic Ekman transport relation.159

a. Wind-Driven Component160

The wind-driven component of the stress is given by the first term on the RHS of (7), which161

can be compared to the exact solution for the case where Av is vertically constant (Stommel 1960;162

Bonjean and Lagerloef 2002),163

τ (z)= τw
sinh

[√
i f
Av
(z+h)

]
sinh

[√
i f
Av

h
] . (11)

The parallels between the WKB approximation, (7), and the solution of the constant-Av problem164

(11) are apparent, with the leading order modification appearing in the argument of the hyperbolic165

functions, θ(z), given by (8). This term can be understood as introducing a stretched vertical166

coordinate system, defined by the integral in (8) (Lupini et al. 1975). Accordingly, hEk(z) =167 √
2Av(z)/ f defines a vertically localized Ekman depth, analogous to the local wavenumber found168

in WKB solutions to the wave equation (see for example Gill 1982, section 8.12).169

The amplitude of the stress is also modified by vertical variations in viscosity, which appears as a170

ratio to the 1/4 power. For a slowly vertically decaying Av, the effect of this term will be apparent171

only as z→−h, where the ratio of Av(z)/Av(0)� 1. Figure 1 compares example vertical profiles172

of stress and velocity for the case of Av decaying exponentially with depth, and for constant Av,173

to illustrate the modification of the vertical structure arising from retaining a depth-dependent174

Av. This depth dependent amplitude term allows the stress amplitude, and hence the ageostrophic175
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velocity, to decay over a different vertical depth scale than the rotation of the stress vector, a176

feature which is commonly noted in observations but cannot be accommodated in classic Ekman177

theory (Price et al. 1986; Wijffels et al. 1994; Chereskin 1995; Price and Sundermeyer 1999). It is178

apparent that if Av is vertically constant in (7), the standard solution (11), as originally identified by179

Stommel (1960) in an investigation of the dynamics of the equatorial undercurrent, is immediately180

recovered.181

b. Inhomogenous Forcing182

The second term on the RHS of (7) is a Green’s function integral, which can accommodate183

arbitrary vertical structure in both ocean sources of stress, which appear as inhomogenous forcing184

terms in (3), as well as in the profile of Av(z), subject only to the constraints imposed by the185

WKB method. The Green’s function kernel takes the form of paired Ekman layers above and186

below interior sources of stress (figure 2), which demonstrates how ocean sources of shear in the187

presence of viscosity drive an ageostrophic frictional response felt throughout the entire boundary188

layer (Hidaka 1955; Csanady 1982). Far from the boundaries the profile of the Green’s function189

is symmetric above and below interior shear, however approaching the boundaries of the domain190

the shape of the Green’s function becomes increasingly asymmetric, and the integral contribution191

serves to satisfy the boundary conditions (4) and (5).192

The ageostrophic flow associated with several simplified forcings are shown in schematic form193

in figure 3. In the absence of wind-stress, with vertically uniform Av and ∇b, Ekman layers are194

generated, both at the surface as well as at the base of the boundary layer, to satisfy the boundary195

conditions (Bonjean and Lagerloef 2002). A more physically realistic case is given in figure 3b,196

where a vertically decaying buoyancy gradient gives rise to both a surface Ekman layer, as well as197

a diffuse interior ageostrophic flow. The strength of the interior portion of the flow, for the situation198
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shown in figure 3b, scales as hEk/h relative to the surface ageostrophic flow, and is therefore often199

assumed small and neglected. However, we note that this flow is necessary to balance the transport200

in the surface Ekman layer so as to maintain the classic Ekman transport relation. Further, this flow201

need not always be small, as illustrated in section 3a discussing surface wave effects, and hence202

should be retained. The final panel shows the case of a decaying Av profile, with constant ∇b.203

The resulting ageostrophic velocities are similar to those in figure 3b, however the associated204

buoyancy fluxes will differ between the two cases, emphasizing how horizontal fluxes will be a205

complex function of the spatial structure of both the background fields and Av, discussed further206

in section 5b.207

The total frictional ageostrophic response thus consists of a directly wind-forced component, as208

well as an integral over Ekman-like responses to interior shear. Therefore, in order to understand209

the oceanic response to wind-forcing it is also necessary to understand the ageostrophic frictional210

response to ocean dynamical processes (Cronin and Kessler 2009). Recent observational work211

has emphasized the importance of removing estimates of the geostrophic shear in order to isolate212

the ageostrophic flow (Chereskin and Roemmich 1991; Polton et al. 2013; Roach et al. 2015),213

however the analysis developed here suggests that to fully isolate the wind-driven component of214

this flow it is also necessary to account for ageostrophic flow driven by the geostrophic shear215

(section 3b). Further, although we have so far limited the discussion to shear which arises from216

baroclinic pressure gradients, we note that any other forcing terms in the momentum equations will217

act in a similar manner, and the case of Stokes shear from surface waves is discussed in section 3a.218

In order to further illustrate the underlying dynamical mechanisms we now consider two limiting219

cases representing important sources of shear in the ocean surface boundary layer which admit220

further simplification of the full solution.221
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3. Limiting Cases222

a. Stokes Shear: hs� hEk223

Surface waves modify the oceanic boundary layer in a variety of important ways (Xu and Bowen224

1994; McWilliams et al. 1997; McWilliams and Restrepo 1999; Sullivan and McWilliams 2010;225

Belcher et al. 2012; McWilliams et al. 2012). Here we focus on one particular aspect, termed the226

Coriolis-Stokes force, which appears as an additional term in the Eulerian momentum equation that227

arises from rotation acting on the Stokes drift, leading to a tilting of wave-orbitals in the along-228

crest direction (Polton et al. 2005). The Coriolis-Stokes force has been shown to significantly229

modify flow in both the very near-surface layer, as well as throughout the entire Ekman layer230

(Huang 1979; Jenkins 1986; Lewis and Belcher 2004; Polton et al. 2005; Aiki and Greatbatch231

2012; McWilliams et al. 2014).232

Equation (1) can be re-written to include the Coriolis-Stokes force as,233

i f (u+us)=−
1
ρ0

∇P+
∂

∂ z

(
Av

∂u

∂ z

)
, (12)

with us the Stokes velocity, given by, us(z) =
∫

k 2σkχ(k)e2|k|zdk, and where σ is the wave fre-234

quency, k the wavenumber vector, and χ(k) the directional wave spectrum (Huang 1971). We make235

the common simplifying assumption that us can be treated as a monochromatic wave such that236

us =U0e
z

hs ŝ(t), where hs = (2|k|)−1, and ŝ(t) is a unit vector in the direction of the waves, which237

is not necessarily aligned with the local surface wind stress. The wavenumber, k, and amplitude,238

U0 are assumed to be known or parameterized. It is important to note that for a time-varying wave239

field, the Coriolis-Stokes force initially accelerates an ‘anti-Stokes’ flow (McWilliams and Fox-240

Kemper 2013), with transients that decay as 1/ f t (Lewis and Belcher 2004). In the steady-state241

problem, including the Coriolis-Stokes force results in an additional forcing term on the RHS of242

(3), perpendicular to the wave direction, given by i f ρAv∂us/∂ z. This appears in the full solution243
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(7) within the Green’s function integral, replacing the bracketed term with, [ρ∇b+ i f ρ∂us/∂ z].244

Hence, both horizontal buoyancy gradients and Stokes shear modify the standard Ekman solution245

in mathematically identical ways.246

In order to provide an asymptotic approximation to (7), we can take advantage of the scale247

separation between the typical depth scale of the surface waves, hs, which is of order several248

meters, and hEk which is of order tens of meters, such that hs� hEk. For simplicity in deriving the249

given form of (13), it is also assumed that τCS(−h)∼ 0, and hAv� hEk where hAv is the depth scale250

over which Av varies, however neither of these assumptions are critical. After repeated integration251

by parts of (7) an asymptotic approximation is given by,252

τ (z)∼ [τw−τCS(0)]
(

Av(z)
Av(0)

) 1
4 sinh [θ(z)]

sinh [θ(0)]
+τCS(z),

h2
s

h2
Ek
→ 0. (13)

The surface wave field therefore introduces a Coriolis-Stokes stress,253

τCS(z) =−ρAv
∂us

∂ z
(1+ i

1
2

h2
Ek(z)
h2

s
)−1, (14)

which is rotated (90+Λ)◦ to the left of the wave direction (Northern Hemisphere) where Λ ∼254

tan−1(h2
s/h2

Ek) (Figure 4). This stress modifies the ageostrophic frictional response in two ways.255

First, the Coriolis-Stokes stress can balance a portion of the applied surface wind stress, leading256

to a total Ekman layer response which can be considered as forced by an effective stress, given257

by the first bracketed term on the RHS of (13), rather than by the wind stress alone (Polton et al.258

2005; McWilliams et al. 2014). Second, the Coriolis-Stokes stress directly affects a layer of depth259

scale hs, through the last term on the RHS of (13). The vertical divergence of this term, in (12),260

drives near-surface ageostrophic velocities that tend to rotate the surface flow into the down-wave261

direction (Fig. 4b,c). Together these two modifications introduce a boundary layer transport of262

−U0hs, canceling the Lagrangian Stokes transport (see Polton et al. 2005, for a detailed discussion263

of the frictional Coriolis-Stokes transport).264
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The results of this section confirm the analysis of Polton et al. (2005), and extend them to an ar-265

bitrary vertical structure of Av, subject to the aforementioned constraints. As discussed by Polton266

et al. (2005, their section 2c), (13) and (14) imply that in the limit h2
s/h2

Ek→ 0, the wave modifica-267

tion to the Eulerian currents can be modeled solely through a modification to the surface boundary268

condition. The proceeding analysis confirms this result is fully independent of the particular form269

of vertical mixing, and consequently may be of general use in guiding observational or modeling270

studies where the Stokes layer is not directly resolved.271

b. Thermal wind shear: hEk� hρ ,hAv272

A similar simplification of Eq. (7) can be found for the case of a horizontal buoyancy gradi-273

ent driving a thermal wind shear in the near-surface layer. We assume that the Ekman depth is274

shallow relative to the depth scales over which the horizontal density gradient and Av vary, ie.275

hEk� hρ ,hAv. An example of the scales associated with a mesoscale frontal system can be found276

from observations of the Azores front (Rudnick 1996), where, using parameters from Nagai et al.277

(2006), hEk ∼ 15m, hAv ∼ 40m, based on the depth of the transition layer below the mixed layer,278

and hρ ∼ 100m, based on the depth of the thermocline and the observed geostrophic frontal veloc-279

ity. This limiting case is marginally valid for these parameter values, and thus can be considered280

as requiring a fairly idealized frontal configuration (cf. Thomas and Lee 2005), included largely281

for the insight it offers into the basic dynamics of (7), and for comparison with (13).282

For simplicity it is also assumed that Av∇b→ 0 at z = −h. If this assumption is not made283

the solution requires an additional bottom Ekman layer at z = −h in order to satisfy the bottom284

boundary condition (5), as shown schematically in Fig. 3a. Repeated integration by parts of285
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equation (7) leads to an asymptotic approximation given by,286

τ (z)∼ [τw−τgeo(0)]
(

Av(z)
Av(0)

) 1
4 sinh [θ(z)]

sinh [θ(0)]
+τgeo(z),

h2
Ek

h2
ρ,Av

→ 0. (15)

Where,287

τgeo(z) = ρAv
∂ug

∂ z

(
1− ih2

Ek(z)

[
A′v
Av

∇b′

∇b
+

1
2

∇b′′

∇b
+

3
8

A′′v
Av

+
3

32

(
A′v
Av

)2
])

, (16)

defines the geostrophic stress, with primes denoting vertical differentiation.288

Closely paralleling the solution for the Coriolis-Stokes stress, (13), the modification of the sur-289

face boundary layer stress by horizontal buoyancy gradients also consists of two components. The290

first is a modification to the Ekman layer, whereby the Ekman response is forced only by that291

portion of the wind stress that is out of balance with the geostrophic stress, which again can be292

considered as defining an effective surface stress, given by the first bracketed term on the RHS293

of equation (15) (Thompson 2000; Nagai et al. 2006; Cronin and Kessler 2009). Thus, even in294

the case of τw = 0, thermal wind shear will drive an ageostrophic flow within the Ekman layer,295

with implications for frontal spin-down (Garrett and Loder 1981; Csanady 1982; Thompson 2000;296

Thomas and Rhines 2002), filament frontogenesis (Gula et al. 2014; McWilliams et al. 2015), and297

near-surface fluxes (Thomas and Ferrari 2008), discussed in section 5b. It is worth noting that298

advection of the horizontal buoyancy gradient by the ageostrophic frictional flow can modify the299

buoyancy gradient and thereby feedback into the Ekman solution, which is discussed in further300

detail in Thompson (2000), and McWilliams et al. (2015).301

The second term on the RHS of equation (15) represents the turbulent stress that arises directly302

from a thermal wind shear in the presence of a viscosity, often termed the geostrophic stress, given303

by (16). The divergence of this term drives a weak flow throughout the entire layer with velocities304

that scale as hEk/h relative to the ageostrophic velocity in the Ekman layer, but with a vertically305
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integrated transport that exactly cancels the transport in the Ekman layer driven by the surface306

geostrophic stress. The definition of geostrophic stress given here, (16), differs from that given307

by previous investigators, who, considering only vertically uniform Av and ∇b, suggest τgeo(z) =308

ρAv
∂ug
∂ z . Including vertical structure in these parameters gives rise to four additional terms in the309

definition of geostrophic stress, bracketed in (16), which enter the asymptotic approximation at310

order h2
Ek/h2

ρ,Av
.311

These additional terms are imaginary, and thus have the effect of rotating the geostrophic312

stress vector slightly from the geostrophic shear vector. This is illustrated in figure 5, where313

the geostrophic stress vector is rotated by an angle, λ , which scales as λ ∼ tan−1(h2
Ek/h2

ρ,Av),314

or equivalently, λ ∼ tan−1(2Ek) (figure 6). Transport in the Ekman layer, UT
Ek, is opposed by315

geostrophic stress driven transport over the full boundary layer depth, UT
BL. Surface velocity is316

given by usur f = uEk(0)+ uBL(0), a combination of the Ekman ageostrophic velocity forced by317

the effective surface stress (uEk), and an interior ageostrophic velocity forced by the divergence of318

the geostrophic stress (uBL). The direction of the near-surface frictional flow relative to the buoy-319

ancy gradient is consequently a function of both the angle of the geostrophic stress, determined320

by vertical structure in Av and ∇b, as well as the ratio uBL/uEk ∼ hEk/h. As a corollary to this,321

a latitudinal dependence in λ appears implicitly through the Ekman depth, as h2
Ek/h2

ρ,Av→ ∞ as322

f → 0, with the geostrophic stress vector becoming increasingly parallel to the buoyancy gradient323

at low latitudes.324

4. Frictional Secondary Circulation325

The cross front circulation which arises from frictional effects, shown schematically in figure 3,326

acts to spin-down ocean fronts, and sharpen cold filaments, due to buoyancy fluxes associated with327

the ageostrophic velocities necessary to match the surface boundary condition, (4), in the presence328
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of a geostrophic shear (Garrett and Loder 1981; Thompson 2000; McWilliams et al. 2015). Fur-329

ther, in the case that ∇2b 6= 0, convergences (divergences) of this cross-front ageostrophic circu-330

lations will drive negative (positive) vertical velocities in the boundary layer (Garrett and Loder331

1981; Thompson 2000). These effects have been examined primarily in the context of subme-332

soscale dynamics, where the Rossby number, ε , is not small, and hence are generally diagnosed333

within the context of non-linear models (eg. Nagai et al. 2006). However, recent comparisons with334

modeled submesoscale eddies and filaments have suggested that vertical velocities in the bound-335

ary layer can be accurately diagnosed using this simple linear theory even at high ε (Ponte et al.336

2013; Gula et al. 2014; McWilliams et al. 2015). At larger spatial scales, similar effects are also337

suggested in an ocean global climate model (Cronin and Tozuka 2015). Therefore, friction acting338

on the baroclinic component of the flow may be important to boundary layer dynamics across a339

range of spatial scales.340

Vertical velocity for the generalized Ekman model is given by the standard relationship,341

w(x,y,z) =−k̂ ·∇× τ (x,y,z)
ρ f

+L(x,y), (17)

where L(x, y) is a constant of vertical integration chosen to fulfill a rigid lid boundary condition.342

To illustrate how the various components of the full solution enter the calculated vertical velocity343

we can utilize the simplified definition of stress given by (13), and (15), in (17), which for a two344

dimensional configuration, invariant in the y-direction, reduces to,345

w(x,z) =− ∂

∂x

[
Im

{
τE f f (x)

ρ f

(
Av(x,z)
Av(x,0)

) 1
4 sinh [θ(x,z)]

sinh [θ(x,0)]

}]
− ∂

∂x

[
Im
{

τ Int(x,z)
ρ f

}]
+L(x).

(18)

The first term on the RHS represents upwelling occurring within the Ekman layer, which is346

now forced by an effective stress, τE f f = τw− τCS(0)− τgeo(0). The second term on the RHS347

gives the boundary layer vertical velocity arising solely from the gradient of the interior forcing,348
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τInt = τCS + τgeo. When (18) is evaluated at the base of the layer, z = −h, it reduces to the349

classic Ekman upwelling driven solely by the curl of the wind-stress, however, within the layer,350

both horizontal gradients in the forcing and horizontal gradients of the vertical structure can drive351

vertical velocities. For the Ekman layer, this can be envisioned as Ekman transport occurring along352

contours of constant hEk, which, for a spatially varying Av, have a vertical component.353

Below the surface Ekman layer, where τCS(x,z) ≈ 0, and in the limit of h2
Ek/h2

ρ,Av
→ 0, (18)354

reduces to the scaling given by Garrett and Loder (1981), w ∼ g f−2ρ−1∂ (Av∂ρ/∂x)/∂x. Thus,355

vertical velocity in the boundary layer interior, outside the Ekman layer, is driven by gradients in356

thermal wind shear and Av, with order h2
Ek/h2

ρ,Av
modifications due to the gradient of the bracketed357

terms in (16), reflecting the role of the vertical structure of Av and ∇b in setting the direction of358

the geostrophic stress vector (Section 3b, figure 6). Approaching the surface, vertical velocity359

decays exponentially over an Ekman layer of depth scale hEk, with additional near-surface vertical360

velocities in a thin layer of depth scale hs driven by the horizontal divergence of the Coriolis-Stokes361

stress.362

To illustrate the secondary circulation that arises from the balance (1), we examine an idealized363

front in the x-z plane (200 km width, h=500 m), based on an approximation of the Frontal Air-Sea364

Interaction Experiment (FASINEX) data (Pollard and Regier 1992), similar to Thompson (2000).365

We set τw = 0 and τCS = 0 as the solution is linear and these effects are simply additive. The366

buoyancy in this model is given by,367

b(x,z) =
1
2

b f tanh
[

ẑ−α(x̂− x0)
3− z0

d0

]
+

1
2

bb tanh
[

ẑ− z0

d1

]
, (19)

with values of parameters given in Table 1 and the hat notation indicating non-dimensionalized368

coordinates ranging from 0 to 1. Values of Av are based on the approximation used in McWilliams369

et al. (2015), designed to be broadly consistent with KPP (Large et al. 1994). This is used simply370
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to illustrate several general features of the solution that arise from horizontal and vertical structure371

in mixing across a frontal region, rather than provide an absolutely accurate diagnostic, and the372

qualitative discussion that follows is not sensitive to the detailed particulars of our choice of Av.373

Av(x,z) = Av0G(ζ )
ĥ(x̂)
h0

+Avb, ζ =− ẑ
ĥ(x)

, (20)

374

G(ζ ) =
27
4
(1+ζ

2
0 )(ζ0 +ζ )(1−ζ )2, ζ ≤ 1, (21)

375

G(ζ ) = 0, ζ > 1. (22)

G has a maximum value of 1 in the boundary layer, ζ0 is a small parameter introduced to avoid a376

singularity at z = 0, and ĥ is the surface boundary layer depth, taken here as,377

ĥ(x) = h0 +δh

(
tanh

[
α(x̂− x0)

3

d0

]
− 1

2

)
. (23)

All parameter values for equations (19-23) are given in Table 1. Figure 7 shows the structure of378

the idealized front, and the eddy viscosity, along with the associated along front geostrophic flow,379

implying ε ∼ 0.05. We further assume w = 0 at z = 0 (rigid lid), and define an ageostrophic cross-380

front streamfunction such that (uag,w) = (ψz,−ψx). Using the meridional momentum equation,381

Im[Eq. (1)], gives382

ψ =
1

ρ f
τ

y(x,z). (24)

The secondary overturning circulation arising from the geostrophic stress is found numerically,383

and shown in figure 7. This is a thermally direct circulation, with a counter-clockwise sense of384

rotation, that tends to tilt the front and restratify the near-surface (Thompson 2000). Downwelling385

velocities on the dense side of the front are stronger than the upwelling on the buoyant side of the386

front, consistent with previous findings (Samelson 1993; Thompson 2000). Streamlines are closed,387

indicating zero vertically integrated horizontal transport, as required to maintain the classic Ekman388
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transport. This is a general result that does not depend on the frontal configuration. Note however389

that although the vertically integrated horizontal transport is zero, the associated fluxes need not390

be zero, as discussed further in section 5b. Further, the vertical buoyancy flux associated with the391

secondary overturning circulation can be non-zero (McWilliams et al. 2015), and hence may play392

a role in the general circulation through vorticity stretching of the interior.393

To illustrate the importance of spatial variability in Av, we decompose the total vertical velocity394

field (figure 8a), wtotal , into vertical velocities due to the gradient in the forcing (∇2b), which we395

designate w f orcing, and the remainder which is a function only of the spatial structure in Av, which396

we designate wAv, as discussed in relation to (18). For the particular frontal configuration examined397

here wAv is∼ 25% of wtotal . However, locally near the base of the turbulent boundary layer (Fig 8,398

dashed line) wAv can be the dominant term, and hence may be of particular importance for vertical399

fluxes into the near-surface layer. For a geostrophic stress, the ratio of vertical velocities is given400

by,401

wAv

w f orcing
∼

L f orcing

LAv
, (25)

where L indicates the relevant horizontal length scales. Observations suggest that horizontal length402

scales over which vertical mixing varies are comparable to frontal features (Dewey and Moum403

1990; Nagai et al. 2006), and hence these effects may be first order in determining the vertical404

velocity in the boundary layer. A similar scaling holds within the Ekman layer, where for a surface405

wind stress aligned orthogonal to a horizontal gradient in Av, the ratio of vertical velocities at406

z =−hEk is,407

wAv

w f orcing
∼

L f orcing

4LAv
. (26)
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5. Discussion and Further Implications408

The solutions presented here build upon prior work by allowing vertical variation in Av, as well409

as realistic structure in ocean fields, such as ∇b and the Coriolis-Stokes force. Examination of410

the solutions (7, 13, 15), suggests many ways in which including more physical realism in the411

problem parameters can modify the expected ageostrophic flow, however to further motivate the412

importance of this added complexity, we first consider scaling arguments relating the importance413

of geostrophic stress and Coriolis-Stokes stress to wind stress. The global distribution of these414

fields are then estimated using a combination of model output and reanalysis data. Finally, we415

comment briefly on the importance of these modifications to determining horizontal fluxes in the416

boundary layer.417

a. Scaling and Geographic Distribution418

The boundary conditions utilized here ensure that the classic Ekman transport relation is main-419

tained, even in the presence of ocean sources of stress. However, as demonstrated in Section 2,420

ocean sources of stress can greatly modify the vertical structure of currents, and hence are fun-421

damental to understanding boundary layer dynamics. Determining the magnitude of both the422

geostrophic stress and the Coriolis-Stokes stress depends critically on the value of Av, which423

complicates their determination from observations. However, at low frequencies, variability in424

near-surface Av may be controlled by variability in the surface wind stress (Wenegrat et al. 2014).425

Taking hEk ∼ u∗/ f (Caldwell et al. 1972), where u∗ =
√

τw/ρ , gives Av ∼ u∗2/ f , and hence the426

ratio of the geostrophic stress to the surface wind stress can be scaled as,427

γGEO =
τgeo

τw
∼ ∇b

f 2 . (27)
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The direct proportionality of γGEO to ∇b, and independence from τw, highlights how the428

geostrophic stress can be expected to be a ubiquitous forcing of ageostrophic flow at sharp frontal429

features, and consequently may be fundamental for understanding horizontal heat flux at buoy-430

ancy fronts. The f−2 dependence indicates a rapid increase at low latitudes. Further, utilizing431

the stratified Ekman depth scaling, hEk ∼ u∗/
√

N f (Pollard et al. 1973), in (27) gives γGEO ∼ Bu,432

where Bu=NH/ f L is the Burger number, defined such that b∼N2H. Determination of Bu is thus433

dependent on the geometry of the particular front being considered, however, for many oceanic434

flows, observations suggest Bu∼O(1), implying γGEO ∼O(1) (Nagai et al. 2006; Boccaletti et al.435

2007).436

The Coriolis-Stokes stress can be scaled relative to the surface wind stress as,437

γCS =
τCS

τw
∼U0hs

ρ f
τw
∼ La−2 hs

hEk
. (28)

Therefore, γCS is proportional to the Stokes transport divided by the wind-driven Ekman trans-438

port (McWilliams and Restrepo 1999; Polton et al. 2005). Alternatively, this can be rewritten using439

the turbulent Langmuir number, La= (u∗/U0)
1/2, which scales the ratio of wind forced production440

of turbulent kinetic energy (TKE) to the wave forced production of TKE (McWilliams et al. 1997;441

Grant and Belcher 2009), with typical values of 0.2-0.5 (Smith 1992; Belcher et al. 2012). This442

suggests that γCS ∼ O(1) for hs/hEk of 0.04 - 0.25.443

To form estimates of the global distributions of γGEO and γCS a combination of reanalysis data444

and model output is utilized. The total Stokes transport is found from the WaveWatch III (WWIII)445

model, reported every 6 hours on a 0.5◦ grid (Rascle et al. 2008; Rascle and Ardhuin 2013). For446

consistency with the WWIII model forcing, we utilize NCEP Climate Forecast System Reanal-447

ysis (CFSR) wind stress, temperature and salinity at 5 m, and horizontal currents at 5 and 15 m448

depth (Saha et al. 2006). To estimate the geostrophic stress we calculate buoyancy gradients from449
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monthly 5 m temperature and salinity (0.5◦ resolution), and then infer approximate monthly values450

of Av using the surface boundary condition, ρAv = τw(∂u/∂ z)−1, with the near-surface shear mag-451

nitude approximated using CFSR velocities at 5 and 15 m, ∂u/∂ z∼ |u(−5)−u(−15)|/10. Alter-452

nate parameterizations of Av were tested, including wind-stress only parameterizations (Wenegrat453

et al. 2014) and bulk Richardson number closures (Pollard et al. 1973), and found to give sim-454

ilar results (not shown here). Monthly values of the Stokes transport and τgeo over the period455

2001-2011 are then used to form climatologies of γGEO and γCS.456

Figures 9 and 10 show the global seasonal climatology of γGEO and γCS, respectively. The depen-457

dence on latitude through the Coriolis frequency is apparent in both quantities, with γGEO peaking458

at low latitudes, and γCS dominating at higher latitudes (figure 11). Regional variability is also459

evident, with γGEO enhanced in boundary currents, along the equatorward edges of the subtropical460

gyres, and through much of the Indian ocean and eastern subtropical Pacific. These parameterized461

results can be compared to estimates derived from model output and alternate parameterizations462

of Av, which indicate similar spatial patterns (Chu 2015; Cronin and Tozuka 2015).463

In the zonal average, and temporal average, γCS becomes larger than γGEO poleward of 15◦464

(figures 10 and 11), following a spatial pattern that in large part reflects the variability in Stokes465

transport (McWilliams and Restrepo 1999). This latitudinal pattern may also reflect the effect466

of the coarse resolution products utilized here on estimating γGEO, as the first baroclinic Rossby467

radius at 15◦ is ∼ 100km (Chelton et al. 1998), which is close to the resolved meridional Nyquist468

wavelength, and hence ∇b may be underestimated at higher latitudes. Wide swaths of the world469

oceans have γCS∼ 0.25, emphasizing how important these effects may be for Ekman layer currents.470

Intensification of γCS in the southern ocean is also evident. In the Northern Hemisphere there is471

a general enhancement of γCS in the eastern side of the ocean basins, with seasonal variability in472
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both extent and magnitude, resulting from enhanced Stokes transport associated with increased473

wintertime wind-forcing.474

The relative influences of the geostrophic stress and the Coriolis-Stokes stress can be consid-475

ered using the joint probability density function (PDF) of the monthly estimates of γGEO and γCS,476

evaluated between 5◦− 73.5◦ from 2001-2011 (figure 12). Consistent with the spatial maps, the477

PDF has a broad peak at γCS ∼ 0.1−0.25 with negligible γGEO. However, the distribution of γGEO478

is long-tailed, reflecting its spatial and temporal inhomogeneity, evident in comparing an example479

month (figure 13) and the climatological maps (figure 9). Considering the total relative change in480

the effective surface stress arising from both the geostrophic stress and the Coriolis-Stokes stress,481

γT = γGEO+ γCS, 36% of all points have γT > 0.25. Together the estimates presented above, while482

only a rough approximation, suggest that surface waves will be of O(1) importance for much483

of the extra-tropics, while baroclinic pressure gradients will dominate at low latitudes, in frontal484

systems, and potentially over shorter timescales, and smaller spatial scales, than resolved here,485

specifically at the submesoscale, where geostrophic stress effects have been demonstrated to sig-486

nificantly modify the ageostrophic flow (Ponte et al. 2013; Gula et al. 2014; McWilliams et al.487

2015).488

b. Horizontal Fluxes489

The proceeding analysis, and theory, highlights how ocean sources of stress can be expected to490

modify the frictional response within the near-surface layer, effecting the magnitude, direction, and491

vertical profile of the ageostrophic flow. These modifications to the ageostrophic velocity can often492

be approximated using the concept of an effective stress, τE f f (section 3), leading to a modified493

Ekman velocity scale of, uEk ∼ τE f f /(ρ f hEk). This has wide-ranging implications for horizontal494

advective fluxes, where for example, the geostrophic stress will always enhance heat flux down495
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the buoyancy gradient relative to the classic Ekman solution, as well as for other dynamically496

important quantities such as the wind-work on the total ageostrophic flow, τw ·uEk, which will be497

reduced for winds aligned with the surface frontal jet (down-front winds), and enhanced for winds498

aligned against the frontal jet (up-front winds).499

A brief example, which highlights the role of vertical structure in Av, is given by considering500

the differential horizontal buoyancy flux across the surface Ekman layer, which can change the501

stratification, and hence the potential vorticity (PV), of the near surface layer (Thomas and Ferrari502

2008). A scaling for the frictional flux of the vertical component of PV due to a surface wind503

stress in the presence of a horizontal buoyancy gradient is given by (Thomas 2005; Thomas and504

Ferrari 2008),505

JF
z ∼

τw

ρhEk
∇b. (29)

However, if Av is allowed to vary vertically, with depth scale hAv, this scaling is modified to506

become,507

JF
z ∼

τw

ρhEk
∇b
(

1+
hEk

4hAv

)
. (30)

This relationship is shown in figure 14, for a wind stress aligned with the front, and an expo-508

nential Av profile that decreases (increases), hAv > 0 (hAv < 0), with depth. As |hAv| approaches509

hEk the surface cross-front current is enhanced (reduced) for hAv > 0 (hAv < 0), modifying the fric-510

tional PV flux. A similar result can be easily derived for the influence of vertical structure of Av511

on the frictional PV flux associated with the frontal spin down by the geostrophic stress (Thomas512

and Ferrari 2008). Thus, the vertical structure of mixing is linked to the flux of vertical potential513

vorticity through its effect on the differential horizontal advection of buoyancy.514

A conceptual example of how this might affect the ocean boundary layer is is found by con-515

sidering the near-surface response to up-front and down-front winds. Down-front winds advect516
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dense water over light water, leading to gravitational instability, whereas up-front winds advect517

light water over dense, enhancing stratification (Thomas and Lee 2005). Making the idealization518

that down-front winds lead to a well-mixed layer with Av ∼ constant, whereas up-front winds lead519

to a stratified near-surface layer with Av decreasing with depth, would imply the existence of an520

asymmetry in PV fluxes between the two cases. Consequently, for the same wind stress and buoy-521

ancy gradient magnitudes, wind-driven frictional PV fluxes may be enhanced in up-front wind522

conditions relative to down-front winds, providing a possible alternative route to the creation of523

positively skewed PV distributions (Thomas 2007).524

6. Summary525

In this manuscript we present an approximate solution to the generalized Ekman (Cronin and526

Kessler 2009), or Turbulent Thermal Wind (Gula et al. 2014; McWilliams et al. 2015), balance.527

While this theory omits many aspects of boundary layer physics that are likely to be active in the528

real ocean, the simplicity and generality of the solution provides a useful tool for gaining insight529

into the underlying dynamics beyond that available from numerical methods. The full solution,530

(7), given in terms of an integral over a Green’s function, can be applied quite generally to a variety531

of sources of near-surface shear, and further allows for arbitrary vertical structure in Av, subject to532

the constraints imposed by the WKB method. Many existing modified Ekman theories can thus be533

considered as particular cases of this solution, providing a framework for comparing their effects534

on ageostrophic ocean currents.535

Two important aspects of surface layer dynamics which are not as readily accommodated in this536

framework are time-dependence, and non-linearity. Observations suggest significant diurnal vari-537

atiability of near-surface shear (Price et al. 1986; Schudlich and Price 1998; Cronin and Kessler538

2009; Smyth et al. 2013; Wenegrat and McPhaden 2015), which has been suggested as an expla-539
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nation of observed discrepancies with classic Ekman theory (Price and Sundermeyer 1999). How-540

ever, analysis of near-surface velocity observations appears to suggest that some of the observed541

features which have been used to argue for the role of time-variability, such as a flattened spiral, can542

also be very well explained by alternate mechanisms that do not invoke time-dependence (Lewis543

and Belcher 2004; Polton et al. 2005; Cronin and Kessler 2009). Disentangling these effects using544

observations is further complicated by measurement challenges, particularly for moored observa-545

tions which can be biased by surface waves (Rascle and Ardhuin 2009). A focus of future work546

should be clarifying the relative contributions of, and interactions between, the diverse sources of547

near-surface ageostrophic flow.548

Non-linear effects may be of particular importance in examining sharp horizontal buoyancy549

gradients (Stern 1965; Niiler 1969; Thomas and Rhines 2002; Mahadevan and Tandon 2006).550

However, a range of modeling efforts which include more complete physics indicate that the basic551

dynamical mechanisms discussed here continue to be of first order importance in the boundary552

layer, even at high ε (Thompson 2000; Nagai et al. 2006; Ponte et al. 2013; Gula et al. 2014;553

McWilliams et al. 2015). We also note that the work of Wu and Blumen (1982), and (Tan 2001),554

can be considered as a blueprint for how the semi-geostrophic momentum approximation could be555

incorporated into the solution given here.556

Examining two limiting cases, the first for Stokes shear of shallow depth relative to hEk, and557

the second for a front much deeper than hEk, reveals the key underlying dynamics. Ocean sources558

of shear, in the presence of viscosity, act as sources of stress. These ocean sources of stress559

are, as a first approximation, independent of the surface wind stress, and are capable of driving560

their own ageostrophic flow, including creating a surface Ekman layer. The equivalency of the561

closed form solutions for the two limiting cases emphasizes how robust this interpretation of the562

underlying dynamics is, suggesting the same interpretation holds for the more general Green’s563
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function solution (7), and highlighting a previously unnoted connection between the frictional564

effects of surface waves and fronts.565

The solutions presented here are unique in their ability to incorporate arbitrary vertical structure566

in Av, which is motivated physically by modeling and direct turbulence measurements (Zikanov567

et al. 2003; Kirincich 2013; Soloviev and Lukas 2014), and is shown here to lead to modifications568

of both horizontal and vertical flows. Improved understanding of the spatial variability of mixing569

is key to understanding and parameterizing these effects on boundary layer flow. Finally, it should570

be emphasized that the various dynamical processes discussed here should not be considered as571

the addition of new parameters to the Ekman problem, but rather as fundamental components of572

the frictional response of the ocean boundary layer whose influence may be of the same order573

of magnitude as the surface wind stress throughout large portions of the global oceans. The total574

frictional ageostrophic response is a combination of a response to the surface wind, as in the classic575

Ekman theory, and a response to ocean sources of shear.576

Acknowledgments. We would like to thank Leah Johnson, Hayley Dosser, and Andrew Shao for577

many helpful discussions during the course of this work. The comments and suggestions of two578

anonymous reviewers improved this manuscript. This publication is partially funded by the Joint579

Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agree-580

ment NA10OAR4320148, Contribution No. 2465. PMEL contribution number 4384. WaveWatch581

III model output is available from the IOWAGA group at: http://wwz.ifremer.fr/iowaga/Products.582

NCEP CFSR data is available at: http://rda.ucar.edu/pub/cfsr.html.583

APPENDIX A584

Derivation585
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Let Av(z) = Av0ψ(z), then, after non-dimensionalizing (3) as discussed in section (2), we have,586

Ekτ
′′− i

ψ(z)
τ = ξ (z), (A1)

587

τ(h) = τw, (A2)
588

τ(0) = 0, (A3)

where primes indicate vertical derivatives and all variables are non-dimensional unless otherwise589

noted. The RHS of (A1) is given in terms of a generic inhomogeneous forcing function, ξ (z),590

which could arise from geostrophic shear or Coriolis-Stokes shear as discussed in section 3. Solv-591

ing first for the homogenous solution, and making the WKB assumption,592

τ ∝ e(S0+S1δ+S2δ 2+...)/δ , (A4)

gives,593

Ek
[

S′′0
δ

+
S′20
δ 2 +

2S′0S′1
δ

+S′′1 +S′21

]
τ− i

ψ(z)
τ = 0. (A5)

The distinguished limit for the parameter δ is therefore, δ ∼ Ek
1
2 , and the balance conditions594

are given by,595

O(δ−2) : S′0 =±

√
i

ψ(z)
, (A6)

596

O(δ−1) : S′1 =−
S′′0
2S′0

. (A7)

Taking the positive root of S′0 gives,597

S0 =
√

i
∫ z

−h
ψ(Z)−

1
2 dZ, (A8)

and,598

S1 =
1
4

logψ(z). (A9)
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A similar argument is followed for the negative root, giving the two solutions to the ODE, which599

dimensionally are given by,600

τ(z) =C1Av(z)
1
4 eθ(z)+C2Av(z)

1
4 e−θ(z), (A10)

where,601

θ(z) =
√

i f
∫ z

−h
Av(Z)−

1
2 dZ. (A11)

For the WKB approximation to hold, two conditions must be satisified (Bender and Orszag602

1978),603

Ek
1
2 S1

S0
� 1, Ek

1
2 → 0, (A12)

604

Ek
1
2 S2� 1, Ek

1
2 → 0, (A13)

discussed further in Appendix B.605

Variation of parameters gives the inhomogeneous portion of the solution,606

τp =−y1

∫ y2ξ (z)
W (y1,y2)

dz+ y2

∫ y1ξ (z)
W (y1,y2)

dz. (A14)

Where W is the Wronskian,607

W (y1,y2) = y1y′2− y2y′1 =−2
√

i f . (A15)

Thus,608

τp = Av(z)
1
4 eθ(z)

∫ e−θ(z)Av(z)
1
4 ξ (z)

2
√

i f
dz−Av(z)

1
4 e−θ(z)

∫ eθ(z)Av(z)
1
4 ξ (z)

2
√

i f
dz. (A16)

Changing the limits of integration gives,609

τp =
∫ z

0

sinh [θ(z)−θ(s)]Av(z)
1
4 Av(s)

1
4 ξ (s)√

i f
ds. (A17)

So, the total solution, before application of the boundary conditions, is given by,610

τt(z) =C1Av(z)
1
4 eθ(z)+C2Av(z)

1
4 e−θ(z)+

∫ z

0

sinh [θ(z)−θ(s)]Av(z)
1
4 Av(s)

1
4 ξ (s)√

i f
ds. (A18)
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Applying the surface BC gives,611

τw =C1Av(0)
1
4 eθ(0)+C2Av(0)

1
4 e−θ(0), (A19)

therefore,612

τt(z) = 2C1Av(z)
1
4 eθ(0)sinh [θ(z)−θ(0)]+ τw

(
Av(z)
Av(0)

) 1
4

eθ(0)−θ(z)

+
∫ z

0

sinh [θ(z)−θ(s)]Av(z)
1
4 Av(s)

1
4 ξ (s)√

i f
ds.

(A20)

The lower BC gives,613

0 = 2C1Av(−h)
1
4 eθ(0)sinh [θ(−h)−θ(0)]+ τw

(
Av(−h)
Av(0)

) 1
4

eθ(0)−θ(−h)

+
∫ −h

0

sinh [θ(−h)−θ(s)]Av(−h)
1
4 Av(s)

1
4 ξ (s)√

i f
ds. (A21)

Following Hidaka (1955), we multiply equation (A20) by sinh[−θ(0)], equation (A21) by614

−
(

Av(z)
Av(−h)

) 1
4

sinh[θ(z)−θ(0)], and add them, giving,615

τ(z) = τw

(
Av(z)
Av(0)

) 1
4 sinh [θ(z)]

sinh [θ(0)]
+
∫ z

0

sinh [θ(z)−θ(s)]sinh[θ(0)]ξ (s)Av(s)
1
4 Av(z)

1
4

(i f )
1
2 sinh[θ(0)]

ds

−
∫ −h

0

sinh [θ(z)−θ(0)]sinh[θ(s)]ξ (s)Av(s)
1
4 Av(z)

1
4

(i f )
1
2 sinh[θ(0)]

ds. (A22)

This can be re-written as,616

τ(z) = τw

(
Av(z)
Av(0)

) 1
4 sinh [θ(z)]

sinh [θ(0)]
+
∫ 0

−h
G(z,s)ξ (s)ds, (A23)

617

θ(z) =
√

i f
∫ z

−h
Av(Z)−

1
2 dZ, (A24)

618

G(z,s) =


sinh[θ(z)]sinh[θ(s)−θ(0)]Av(s)

1
4 Av(z)

1
4

sinh[θ(0)]
√

i f if s > z

sinh[θ(s)]sinh[θ(z)−θ(0)]Av(s)
1
4 Av(z)

1
4

sinh[θ(0)]
√

i f if s < z.
(A25)
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APPENDIX B619

Accuracy of approximate solution620

The validity of the physical-optics WKB approximation requires the criteria (A12) and (A13)621

be satisified (Bender and Orszag 1978). The relative error in the approximation will then be a622

function of the small parameter δ ∼ Ek1/2 and the first ignored term, S2, in (A4), which involves623

both first and second derivatives of Av. Thus, errors will be a function of the Ekman number, Ek,624

as well as the particular vertical structure of Av. Anecdotally, the WKB solution (7) has proven625

extremely accurate across a wide-range of vertical structures of Av, and values of Ek, considered626

in developing the model (see also Grisogono 1995; Berger and Grisogono 1998). However, to627

better illustrate the accuracy of the approximate solution we consider the relative error associated628

with 3 idealized forms of Av (figure B1).629

Case I is a simple exponentially decaying profile,630

Av(z) = Av0e
ẑ

0.125 , (B1)

chosen for its analytic simplicity, and consistency with observations (Peters et al. 1988; Dillon631

et al. 1989). Case II is a linearly decaying profile,632

Av(z) = Av0

(
1+

ẑ
1+µ

)
, (B2)

where µ is a small value added to avoid a singularity at z = −h. Case III is a modified Gaussian633

profile (Parmhed et al. 2005),634

Av(z) = Av0φ ẑe−
1
2 (

ẑ
0.25 )

2
(B3)

where, φ = e1/2/0.25, which approximates the polynomial profile of O’Brien (1970). This profile635

violates (A12) in a thin layer near z = 0, where Av→ 0, and hence we evaluate the error associated636
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with this profile only over the depth range where the WKB solution can be expected to be valid.637

Namely ẑ≤ zp, where zp is given by Parmhed et al. (2005) as,638

zp =−
1
4

[
W
(

2√
φ

)]2

, (B4)

where W is the Lambert W function (Corless et al. 1996). For the values used here, zp = −0.06,639

thus, rather than patching an additional inner solution for ẑ > zp, we make the simplifying approx-640

imation of applying the surface boundary condition directly to the WKB solution at zp, similar to641

the introduction of a roughness length scale (Madsen 1977), and equivalent in the error analysis to642

the requirement that any inner solution be exact.643

To form an estimate of the relative error as a function of Ek, WKB solutions (7) are compared to644

numeric solutions, found using a shooting method, and the normalized maximum error identified645

in each vertical profile,646

τ̂err(Ek) =
max{|τWKB(z,Ek)− τnum(z,Ek)|}

max{|τnum(z,Ek)|}
. (B5)

Results are plotted in figure B2, for wind stress only forcing (top), and solutions forced by a647

vertically uniform buoyancy gradient (bottom). Also plotted for reference is the value of the small648

parameter, δ ∼ Ek1/2. Errors are generally small, and, for Ek ≤ 10−1, the only case with relative649

errors exceeding 10% is the modified exponential profile, (B3). The errors associated with this650

profile are strongly dependent on the choice of patching depth, zp, rather than the overall vertical651

structure, as can be anticipated through the logarithmic singularity evident in (A12). Hence caution652

is required in applying (7) in cases where Av→ 0 near a boundary. Despite the limitations of the653

WKB method, its simplicity, and generality, argue its utility, particularly in comparison to the654

often strict parameter requirements associated with other analytic solutions techniques.655
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TABLE 1. Parameters for equations (19-23).

Parameter Value Physical Interpretation

b f −0.6g/ρ0 Buoyancy change across front

bb b f/2 Buoyancy change across thermocline

α −1.185 Horizontal scaling factor

z0 0.75 Vertical position

x0 1 Horizontal position

d0 0.125 Horizontal scale

d1 0.125 Vertical scale

f 6.88×10−5s−1 Coriolis frequency

Av0 3×10−2m2s−1 Eddy viscosity magnitude

Avb 1×10−4m2s−1 Background viscosity

h0 0.84 Turbulent boundary layer depth

δh 0.05 Across front change in boundary layer depth

ζ0 5×10−3 Regularization constant
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FIG. 3. Schematics of the ageostrophic flow induced by a horizontal buoyancy gradient, with thin lines

indicating density contours. a) Uniform viscosity and buoyancy gradient leads to a downgradient ageostrophic

flow in the near-surface Ekman layer, and upgradient flow in a bottom Ekman layer. b) Uniform viscosity

and linearly decaying buoyancy gradient leads to a downgradient ageostrophic flow in the Ekman layer, and a

uniform weak up-gradient flow throughout the remainder of the layer. c) linearly decaying viscosity and uniform

buoyancy gradient leads to a similar pattern of flow as in the middle panel. Figure is based on Thomas and Ferrari

(2008), their Figure 1.
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FIG. 4. Stress and ageostrophic velocity for a zonal surface wind stress, τw = 0.1Nm−2, in the presence of

a downwind wave field with Stokes velocity amplitude U0 = 0.22ms−1 and depth scale, hs = 3.4m (Komen

1996). a) Hodograph of total stress (black), wind-forced component (blue), component forced by the effective

surface stress arising from the Coriolis-Stokes stress (solid red), and the Coriolis-Stokes stress (dashed red). b)
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c the Ekman depth (solid black) and hs (dashed black) are indicated.
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FIG. 5. Schematic of the components of the frictional ageostrophic response to a horizontal buoyancy gradient,

with contours of constant ρ shown in gray. The geostrophic stress is rotated by an angle λ from the geostrophic

shear, which points along lines of constant ρ . The divergence of this geostrophic stress drives an ageostrophic

velocity, uBL, and transport UT
BL, rotated 90◦ to the right (N. Hemisphere). Geostrophic stress at the surface drives

an Ekman response, through an effective surface stress −τgeo, with associated velocities uEk, and transport UT
Ek.

The surface velocity is given by usur f = uBL(0)+uEk(0). Vectors are not to scale.
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FIG. 6. Contour plots of λ (◦, positive solid, negative dashed), the angle of the geostrophic stress relative

to the direction of the geostrophic shear, as defined in the text by (16), evaluated at z = 0. Left panel: Linear

Av (Av(z) = Av0(1+ z
hAv

)) and linear ∇b (∇b(z) = B0(1+ z
hρ
)), right panel: modified Gaussian Av (Av(z) =

Av0(
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hAv
+ 0.25)exp[− 1

2(
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hAv
)2 + 1

2 ]), as discussed in Appendix B, and exponential ∇b(z) (∇b(z) = B0e
z

hρ ). In

both plots hEk =
√

2Av0/ f , and positive parameter values indicate fields which decay downwards.
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FIG. 7. Across-front sections of the idealized two-dimensional front discussed in section 4, with contours of

constant ρ indicated in solid black. Upper left: along-front geostrophic velocity, upper right: Av, lower panel:

frictional ageostrophic overturning streamfunction (m2s−1, eq. 24), with contours of constant Av in gray.
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FIG. 8. Frictionally driven boundary layer vertical velocity. Top: Total vertical velocity, Middle: vertical

velocity arising from the gradient in the horizontal buoyancy gradient, Bottom: vertical velocity due to gradient

in Av. The dashed line indicates the turbulent surface boundary layer depth, defined by (23). Note reduced

colorscale in bottom panel.
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FIG. 9. Global climatology, 2001-2011, by seasons with months indicated in plot titles, for γGEO as defined

in the text by equation (27).
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FIG. 10. As in figure 9 but for γCS as defined in the text by equation (28).
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FIG. 11. Zonal, and temporal, averages of γGEO and γCS.
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FIG. 12. Global area-weighted joint probability density function (PDF) of γGEO and γCS, center panel, esti-

mated monthly from 2001-2011. Left panel shows the PDF of γGEO, lower panel the PDF of γCS. Climatological

average values are indicated in the center panel for the locations of several previous Ekman layer studies, Long

Term Upper Ocean Study (‘x’, Price et al. 1987), Transpacific Hydrographic Survey (basin averaged, ‘�’, Wijf-

fels et al. 1994), Eastern Boundary Current experiment (‘+’, Chereskin 1995), and 2◦N, 140◦W (‘◦’, Cronin and

Kessler 2009).
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FIG. 13. Example single month estimate of γGEO and γCS, showing additional spatial detail not evident in the

climatological maps (figures 9, 10).
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FIG. 14. Frictional flux of potential vorticity due to the wind-driven differential horizontal buoyancy advection

across the Ekman layer. Numerical solutions of f [uEk ·∇b]z=0 are plotted (solid) as a function of the eddy

viscosity depth scale, where Av(z) = Av0ez/hAv . Values are normalized by (29). Also plotted is the scaling

suggested by (30) (dashed), which overlaps the numerical solution for most of the parameter space.
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